翻訳と辞書
Words near each other
・ Variable cycle three-stroke engine
・ Variable Cylinder Management
・ Variable damselfly
・ Variable dancer
・ Variable darner
・ Variable Data Intelligent Postscript Printware
・ Variable data printing
・ Variable data publishing
・ Variable density goggles
・ Variable Density Tunnel
・ Variable displacement
・ Variable displacement pump
・ Variable dorid
・ Variable dwarf kingfisher
・ Variable electro-precipitator
Variable elimination
・ Variable Energy Cyclotron Centre
・ Variable envelope return path
・ Variable fighter
・ Variable force solenoid
・ Variable frame rate
・ Variable gauge
・ Variable Geo
・ Variable Geo (anime)
・ Variable geometry
・ Variable Geometry Acoustical Dome
・ Variable geometry turbomachine
・ Variable goshawk
・ Variable grass mouse
・ Variable hawk


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Variable elimination : ウィキペディア英語版
Variable elimination
Variable elimination (VE) is a simple and general exact inference algorithm in probabilistic graphical models, such as Bayesian networks and Markov random fields.〔Zhang, N.L., Poole, D.: A Simple Approach to Bayesian Network Computations. In:7th Canadian Conference on Artificial Intelligence, pp. 171–178. Springer, New York(1994)〕〔Zhang, N.L., Poole, D.:A Simple Approach to Bayesian Network Computations.In: 7th Canadian Conference on Artificial Intelligence,pp. 171--178. Springer, New York (1994)〕 It can be used for inference of maximum a posteriori (MAP) state or estimation of marginal distribution over a subset of variables. The algorithm has exponential time complexity, but could be efficient in practice for the low-treewidth graphs, if the proper elimination order is used.
==Inference==
The most common query type is in the form p(X|E = e) where X and E are disjoint subsets of U, and E is observed taking value e. A basic algorithm to computing p(X|E = e) is called ''variable elimination'' (VE), first put forth in.〔


Algorithm 1, called sum-out (SO), eliminates a single variable v from a set \phi of potentials,〔Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge, MA (2009)〕 and returns the resulting set of potentials. The algorithm collect-relevant simply returns those potentials in \phi involving variable v.
Algorithm 1 sum-out(v,\phi)
:\Phi = collect-relevant(v,\phi)
:\Psi = the product of all potentials in \Phi
:\tau = \sum_ \Psi


return (\phi - \Psi) \cup \
Algorithm 2, taken from,〔 computes p(X|E = e) from a discrete Bayesian network B. VE calls SO to eliminate variables one by one. More specifically, in Algorithm 2, \phi is the set C of CPTs for B, X is a list of query variables, Eis a list of observed variables, e is the corresponding list of observed values, and \sigma is an elimination ordering for variables U - XE, where XE denotes X \cup E.
Algorithm 2 VE(\phi, X, E, e, \sigma)
:Multiply evidence potentials with appropriate CPTs While σ is not empty
:Remove the first variable v from \sigma
:\phi = sum-out(v,\phi)
:p(X, E = e) = the product of all potentials \Psi \in \phi
return p(X,E = e)/ \sum_ p(X,E = e)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Variable elimination」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.